Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation

نویسنده

  • Aapo Hyvärinen
چکیده

Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this article, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a soft-thresholding (shrinkage) operator on the components of sparse coding so as to reduce noise. Our method is closely related to the method of wavelet shrinkage, but it has the important benefit over wavelet methods that the representation is determined solely by the statistical properties of the data. The wavelet representation, on the other hand, relies heavily on certain mathematical properties (like self-similarity) that may be only weakly related to the properties of natural data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation

Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood est...

متن کامل

Denoising of Sensory Data by Maximum Likelihood Estimation of Sparse Components

Sparse coding is a method for nding a representation of data in which each of the components of the representation is only rarely signiicantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood estima...

متن کامل

Denoising of Nongaussian Data by Independent Component Analysis and Sparse Coding

Sparse coding is a method for nding a representation of data in which each of the components of the representation is only rarely signiicantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood estima...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Sparse Code Shrinkage Based on the Normal Inverse Gaussian Density Model

In this paper we introduce the recent normal inverse Gaussian (NIG) probability density as a new model for sparsely coded data. The NIG density is a flexible, four-parameter density, which is highly suitable for modeling unimodal super-Gaussian data. We demonstrate that the NIG density provides a very good fit to the sparsely coded data, obtained here via an independent component analysis (ICA)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 1999